

Demonstration of Multi-Pollutant Capture Including CO₂ and SO₂ from Coal Combustion

William Wang, Songgeng Li, Shwetha Ramkumar,
Danny Wong, Mahesh Iyer, L-S Fan
Robert M. Statnick
Bartev Sakadjian

May 6, 2008

Demonstration Project Team

Organization	Roles
Ohio State University	Project Lead, Testing, Data Analysis
Clear Skies Consulting	Project Manager
AEP	Co-funder
AirPol, Inc.	Co-funder
Babcock & Wilcox	Co-funder
CONSOL Energy	Co-funder
Duke Energy	Co-funder
Specialty Minerals Inc.	Co-funder

[©] The Ohio State University. All rights reserved.

Solid Sorbent Chemistry

Use of metal oxide (CaO) in a capture and regeneration system

Carbonation: CaO + CO₂ \rightarrow CaCO₃ Δ H=-178 kJ/mol

Calcination: $CaCO_3 \rightarrow CaO + CO_2 \Delta H = +178 \text{ kJ/mol}$

Advantages of Carbonation Calcination Reaction (CCR)

- Operates under flue gas conditions
- High equilibrium sorbent capacities
- High CO₂ removals at low Ca/C mole ratios
- Low cost of sorbent
- Regenerative cycle produces pure CO₂ stream

CCR Development Timeline

Timeline	Achievements/Targets
2000-2004	Inception of the concept and detailed lab scale testing at OSU. Funded for 4 years by the OCDO.
2005-2009	Integration of various unit operations and testing in a continuous system at a research test facility built at OSU
2009-2011	Pilot scale demonstration or testing in a slip stream of a Pulverized Coal Boiler facility
2011-2015	Full Scale Demonstration and Commercialization of this technology

[©] The Ohio State University. All rights reserved.

Sub-Pilot Demonstration Process

© The Ohio State University. All rights reserved.

Summary of Phase I Results

- Demonstrated continuous operation for over 13 hours
- Demonstrated >90% CO₂ and 100% SO₂ Removal
- Determined the effect of residence time, sorbent type, and fly ash addition on CO₂ and SO₂ removal

Sub-Pilot Demonstration Process

© The Ohio State University. All rights reserved.

Economics

➤ Parasitic Energy Consumption: Energy required to operate CO₂ capture technology that would otherwise be available for power generation

Amine Scrubbing	30%1
Oxycombustion	28%1
CCR Process	18-23%

➤ In terms of cost/ton CO₂ avoided:

Amine Scrubbing	\$53 ²
Oxycombustion	\$352
PFBC CO ₂ Capture	\$253